Какой контроллер выбрать для солнечной батареи

Какой контроллер выбрать для солнечных батарей

Дата публикации: 2 января 2019

Автономные гелиосистемы, которые не требуют подключения к общей сети, состоят из множества элементов: солнечных батарей, инвертора, аккумулятора, реле и т.д. Ключевую роль в системе занимает контроллер. Он регулирует работу гелиосистемы и управляет аккумулятором. Главная задача контроллера — не допустить разрядки аккумулятора, а также не позволить ему перегружаться. Это позволяет продлить срок службы аккумулятора и предупредить его поломку в случае перегрузок.

Как подобрать контроллер заряда для солнечных батарей

В первую очередь стоит обратить внимание на такие параметры, как:

  • Входное напряжение. Взгляните на информацию в техпаспорте: там указывается максимальное напряжение и напряжение «холостого хода» солнечной батареи. Первый параметр должен быть на 20% выше «холостого хода». Даже если производители указали в документациях завышенные показатели, с этим нехитрым расчетом подобрать подходящий контроллер — реально и без специалиста. Учитывайте и то, что при высокой активности Солнца (в летний период), напряжение в солнечных батареях будет на порядок выше, чем указано в техпаспорте.
  • Наличие защиты. Многие модели оснащаются дополнительной защитой от различных неприятных ситуаций: неправильное подключение полярности, короткие замыкания, удар молнии, перегрев, разрядка в ночное время и т.п. Выбирайте контроллер с учетом индивидуальных потребностей: например, если в вашем регионе грозы — частое явление, тогда защита от удара молнии пригодится.
  • Номинальный ток. Для моделей каждого типа устройства он свой. Для PWM-контроллеров номинальный ток на 10% выше тока короткого замыкания солнечного модуля. Для MPPT моделей номинальный ток вычисляется, исходя из мощности, которая должна быть равна или немного превышать произведение напряжения солнечной батареи на ток регулятора.

В период высокой инсоляции без контроллера не обойтись: случаются перегрузки, и вся гелиосистема способна выйти из строя. Чтобы этого не произошло, необходимо дополнительно рассчитать показатели номинального тока «про запас». Всегда лучше приобрести более дорогой контроллер с высокими параметрами мощности. Для вычисления показателей, необходимых для расчета «запаса», к полученным значениям по номинальному току прибавьте еще 20% мощности — этого достаточно, чтобы спасти гелиосистему от перегрузок.

Обзор контроллеров солнечной батареи: разновидности

По своему устройство различают четыре типа контроллеров (не считая самодельных):

  • OnOff — отключает заряд по достижению верхнего предела напряжения;
  • PWM — для понижения заряжающего тока при максимальных нагрузках;
  • МРРТ — сложная система, снимающая высокое напряжение с батарей с последующей оптимизацией нагрузки;
  • гибридные — созданы для комбинированных систем (солнечные модули + ветряки) для сброса избыточной энергии.

Чем сложнее модель, тем выше ее стоимость. Поэтому устройства типа «OnOff» всегда будут стоить дешевле, чем МРРТ. Необязательно покупать последнюю новинку техники, если вам необходим простой контроллер для солнечной батареи на даче. В этих случаях модели «OnOff» будет достаточно. Если вам необходимо позаботиться о гелиосистеме, работающей на постоянной основе и служащей для обеспечения электроэнергией жилого дома, тогда стоит задуматься о приобретении PWM или МРРТ моделей. Гибридные модели актуальны только для владельцев комбинированных систем. Они строятся на базе МРРТ или PWM с той разницей, что у них используются вольтамперные системы исчисления.

Советы по выбору контроллера для солнечной батареи

Чтобы не совершить ошибку при покупке, учитывайте такие аспекты:

  • Мощность солнечных батарей не должна превышать мощности контроллера — это приводит к поломке. Учитывайте, что не каждое устройство располагает функцией ограничения мощности. На деле такой опцией оснащены только модели от продвинутых производителей. К примеру, линейка «Tracer A» от компании EpSolar. Подобный ограничитель указывается в технических характеристиках.
  • В расчетах учитывайте, что из-за низких температур общий показатель КПД гелиосистемы увеличивается, в то время как показатель номинальной мощности (в техпаспорте) указывается для средней температуры 25°С. Для примера: у кремниевых батарей температурный коэффициент колеблется от 0,3% до 0,5% на градус по Цельсию. Значит, для -25°С мощность увеличится на 20%. Если не брать это во внимание, то высок риск купить неподходящий контроллер.
  • Никогда не устанавливайте контроллер с меньшим номиналом — он сломается, даже если вы собираетесь использовать его для неполной нагрузки. Ситуации случаются разные, и от капризов погоды не застрахован никто.
  • Сами производители отмечают, что лучший контроллер для солнечных батарей — тот, который оснащен температурной компенсацией зарядных напряжений. От температуры аккумулятора зависит предельное напряжение зарядки. Иными словами, с наличием встроенного или подключенного температурного датчика вы сможете следить за перегревом устройства. Это позволяет избежать поломок и повысить точность работы аккумулятора.
  • Для измерения выработки энергии от Солнца учитывайте среднемесячные значения за пять-семь лет — не только последние показатели. Это позволяет увидеть широту колебаний солнечного массива и выбрать не только подходящие модули, но и соответствующий им контроллер.

Вам нужно войти, чтобы оставить комментарий.

Источник: altenergiya.ru

Выбор контроллера заряда для солнечных батарей

Если Вы знакомы с особенностями солнечных батарей, а именно с тем, что они представляют собой источники тока, что как раз и необходимо для зарядки аккумуляторов, то может возникнуть следующий вопрос.

Зачем вообще нужен контроллер заряда для солнечной батареи? И действительно, достаточно просто соединить солнечную батарею с аккумулятором, и при наличии хоть какого-то света, а еще лучше – Солнца, от солнечной батареи пойдет зарядный ток в аккумулятор и без использования контроллера.

Так для чего же тогда покупать контроллер заряда, какие функции он выполняет и в чем отличие разных типов контроллеров (MPPT, PWM, ON/OFF)? Попробуем разобраться с этим.

Читайте также:  Использование витражей в современном интерьере

Итак, что будет, если не применять его совсем? При прямом подключении солнечной батареи к аккумулятору пойдет зарядный ток и напряжение на клеммах аккумулятора начнет постепенно расти. Пока оно не достигнет предельного напряжения зарядки (которое зависит от типа аккумулятора и его температуры), прямое подключение будет равнозначно присутствию контроллера моделей PWM или ON/OFF, поскольку в этом режиме эти модели просто соединяют вход и выход.

При достижении предельного напряжения (около 14 Вольт), ON/OFF контроллер, который является самым дешевым из всех типов, просто отключит солнечную батарею от аккумулятора и заряд прекратится, хотя в реальности аккумулятор заряжен еще не полностью и для полной зарядки требует поддержания на нем предельного напряжения в течение еще нескольких часов. Эту задачу решает PWM контроллер, который при помощи широтно-импульсного преобразования (ШИМ или, по английски — PWM) понижает напряжение солнечной батареи до нужного значения и поддерживает его.

Если же Вы не используете никакого контроллера, то Вам нужно постоянно следить при помощи вольтметра за зарядным напряжением и в нужный момент отключить солнечную батарею. И если Вы забудете ее отключить, то это приведет к перезаряду, выкипанию электролита и сокращению срока службы аккумуляторов. Однако, если Вы и отключите ее вовремя или же используете простой ON/OFF контроллер, аккумуляторы останутся заряженными не полностью (примерно на 90%), а регулярный недозаряд в конечном итоге приведет к значительному сокращению их срока службы.

Существуют еще два важных фактора, которые должны быть учтены при заряде аккумуляторов. Качественные контроллеры заряда обязательно должны учитывать температуру аккумулятора и иметь температурную компенсацию зарядных напряжений, а также иметь выбор типа аккумуляторной батареи (AGM, GEL, жидко-кислотный), поскольку разные типы имеют разные зарядные кривые (разные напряжения в одних и тех же режимах). Отметим также, что для температурной компенсации может использоваться как встроенный температурный датчик, так и выносной. При использовании выносного температурного датчика, точность работы контроллера повышается.

Подведем промежуточный итог.

Мы рассмотрели вариант отказа от контроллера заряда, а также использование двух типов контроллеров — PWM и ON/OFF и пришли к выводу, что наилучшим из перечисленных вариантов является PWM тип. При этом крайне важно наличие у него температурной компенсации и возможности выбора типа аккумуляторных батарей.

Источник: www.solnechnye.ru

Контроллер для солнечной батареи

Контроллер – электронный прибор, отвечающий за контроль и регулировку заряда аккумуляторной батареи. Различные модели отличаются по конструкции и режиму работы.

Виды контроллеров

В настоящее время солнечные электростанции комплектуют контроллерами трех вариантов, это:

On/Off контроллер

Наиболее дешевый аппарат. Отличительная черта данного типа аппарата в том, что при достижении определённого максимального показателя напряжения аппарат отсоединяет блок солнечных батарей от аккумуляторов, и зарядка приостанавливается. Контроллер этого типа применяются редко, т. к. при их использовании происходит неполный заряд батарей, что плохо отражается на их состоянии, и в продолжительной перспективе, приводит к полному выходу из строя. Единственный плюс у данного типа – низкая стоимость.

ШИМ (PWM) – контроллер

В основу работы данного типа электронного устройства заложена широтно-импульсная модуляция. В процессе эксплуатации контроллер этого типа, прекратив заряжать аккумуляторную батарею, не отключает солнечные панели, что позволяет полностью зарядить АКБ. Как правило, такие аппараты используются в установках небольшой мощности, до 2,0 кВт.

МРРТ – контроллер

Это наиболее дорогие по стоимости устройства. Работа приборов данного типа основана на управлении пиками, выходящими на максимальный энергетический уровень. Данный тип контроллера более эффективен при использовании и сокращает сроки окупаемости солнечных электрических станций.

Какие параметры контроллера необходимо учитывать

Чтобы определить критерии при выборе контроллера, необходимо сформулировать функции, которые он выполняет, к ним можно отнести следующие:

  • Обеспечение заряда аккумуляторной батареи;
  • Отключение аккумуляторной батареи при полном заряде в автоматическом режиме;
  • Отключение нагрузок при минимальном заряде в автоматическом режиме;
  • Подключение нагрузок при восстановлении заряда;
  • Подключение фотоэлементов при заряде аккумуляторной батареи в автоматическом режиме.

Определившись с функциями, за выполнение которых отвечает контроллер, можно сформулировать параметры, которые обязательно учитывают при выборе устройства.

Основных параметров два, это:

  1. Напряжение, которое фиксируют на входе. Максимально допустимое напряжение может на 15 – 20% быть выше, чем на «холостом ходу» солнечной панели.
  2. Показатели номинального тока. Для ШИМ (PWM) контроллера этот количественный показатель должен быть выше на 10% показателя тока при коротком замыкании в работе солнечной панели. MPPT-контроллер выбирают по мощности, которая должна быть выше величины произведения выходного тока регулятора и напряжения всей системы, плюс 20% от полученного значения, для создания запаса мощности в периоды активного солнца.

Современные модели контроллеров оснащены разнообразными защитными механизмами и возможностью работы в разных режимах. Наличие подобных элементов в конструкции того или иного прибора не влияет на основные параметры при его выборе, но дополнительно стимулирует приобретение той или иной модели.

К таким элементам защиты можно отнести:

  • Защита от подключения неправильной полярностью;
  • Защита на входе от случаев короткого замыкания;
  • Защита во время нагрузок от короткого замыкания;
  • Защита от перегревов;
  • Защита на входе от высоких нагрузок напряжения;
  • Защита от ударов молний;
  • Схемы предотвращения ночного разряжения аккумуляторных батарей;
  • Электронные предохранители.

Как выбрать контроллер для заряда солнечных батарей

Чтобы выбрать необходимый контроллер, необходимо определиться, какие солнечные панели установлены, или планируется установить. Далее необходимо рассчитать их мощность, определить, на какое рабочее напряжение они рассчитаны, уточнить прочие параметры формируемой системы.

Читайте также:  Востребованные виды облицовки фасадов

Затем изучают параметры, предъявляемые к контроллеру, и увязывают их с характеристиками системы, в которой будет работать устройство. Когда технические величины определены и отвечают предъявляемым к ним требованиям, необходимо выбрать страну и фирму производителя устройства, решить из какого ценового диапазона следует выбрать котроллер. Определиться с местом приобретения и купить выбранный аппарат.

Как сделать контроллер своими руками

При наличии знаний в области электроники и умения обращаться с паяльником, можно изготовить контроллер заряда из подручных материалов самостоятельно. Конечно, это будет простейший из видов контроллеров, так называемый тип «On/Off» контроллеров.

В приведенной внизу схеме с помощью электронных компонентов формируется сигнал, получаемый от солнечных панелей. Транзисторы, установленные в схеме, управляют работой последней, резисторы регулируют параметры переключения режимов работы, а микросхемы выполняют роль операционного усилителя и регулятора параметров.

Хотя из приведенной схемы видно, что изготовить подобный элемент системы несложно, к тому же всегда схему можно дополнить и доработать, но все же несмотря на очевидную простоту, использовать контроллеры, изготовленные подручными средствами самостоятельно не рекомендуется, дабы избежать неблагоприятных последствий, таких как вывод из строя аккумуляторных батарей.

Можно ли обойтись без контроллера для солнечной батареи

Иногда при самостоятельной разработке солнечной электрической станции возникает вопрос, а можно ли обойтись без контроллера? Для ответа на поставленный вопрос необходимо вспомнить о роли данного устройства в системе преобразования солнечной энергии в электрическую. Если сформулировать коротко, то – контроллер управляет процессом заряда аккумуляторных батарей.

При отсутствии данного элемента схемы управления, возможно закипание электролита в АКБ, что в свою очередь приведет к повреждению аккумуляторной батареи, стоимость которой значительно превышает стоимость контроллера. Из этого делаем вывод, что работа солнечной электрической станции в автоматическом режиме без контроллера недопустима.

Единственный случай, когда можно исключить контроллер из схемы управления – это не продолжительное по времени использование солнечных панелей. В этом случае, в цепь зарядки АКБ, устанавливается вольтметр и в моменты, когда заряд достигает пиковых значений, аккумуляторные батареи в ручном режиме отключают. После прохождения пиковых нагрузок, цепь зарядки, опять же в ручном режиме, включается в работу.

В настоящее время изготовлением разнообразных электронных устройств занимается большое количество отечественных и зарубежных компаний. Стоимость контроллеров разнообразных типов колеблется от 5,0 до 10,0 тысяч рублей, поэтому нет необходимости изготавливать такое сложное электронное устройство самому или вообще исключать его из схемы управления солнечной электростанции.

Получив экономию в малом, можно потерять больше при выходе из строя АКБ, к тому же работа в автоматическом режиме, которую осуществляет прибор, изготовленный профессионалами, позволяет экономить время владельца, а в современном мире, когда все быстро течет и происходит, это немаловажный фактор. Однако каждый для себя делает индивидуальный выбор, благо он, это выбор, есть всегда.

Источник: alter220.ru

Солнечный контроллер заряда батареи

Солнечный контроллер – специальный электроприбор, который отвечает за заряд аккумулятора от солнечной батареи. Обойтись без него невозможно, поскольку бесконтрольная зарядка-разрядка всегда заканчивается выходом АКБ из строя.

Задачи, которые решает контроллер заряда солнечной батареи

  • Отключает АКБ, как только она полностью зарядится;
  • Регулирует напряжение и ток заряда в зависимости от уровня заряда АКБ и нагрузки;
  • Отключает потребителей, когда заряд снижается до критического минимума;
  • Повторно подключает потребителей, когда уровень заряда восстановится;
  • Осуществляет автоматический контроль за ходом зарядки;
  • Подключает фотоэлементы для зарядки в авто-режиме.

Использование этого простого прибора позволяет существенно увеличить эксплуатационный ресурс аккумулятора , а так же получить от солнечных батарей их максимум.

Основные виды

  1. PWM (ШИМ) контроллеры заряда. Позволяют добиться 100% зарядки АКБ. Но в следствии отсутствия механизма преобразования излишков напряжения в силу тока и технологии слежения за точкой максимума, данный тип контроллеров не в состоянии выжать из солнечных батарей все на что они способны. Устройства данного типа как правило используются в небольших системах мощностью до 2 кВт.
  2. МРРТ контроллеры заряда. Самые продвинутые и сложные на сегодняшний день. Они эффективны и надежны в работе, обладают расширенным спектром настроек и различными элементами защиты. Применение контроллеров данного типа позволяет ускорить окупаемость солнечных электростанций. За счет механизма преобразования напряжения в силу тока и интеллектуальной системой слежения за точкой максимума, их эффективность на 20-30% выше, по сравнению с предыдущими моделями. Устройство данного типа используются как в маленьких так и в больших (промышленных) объектах. А так же в местах с ограниченной площадью для размещения солнечных батарей в ситуации когда необходимо получить от них максимум (к примеру, на автомобилях, катерах или яхтах)

Какой контроллер выбрать?

При выборе стоит исходить из мощности и производительности системы. Если они невелики, будет достаточно PWM – доступно по цене, просто и надежно в эксплуатации.

Если же система с солнечными панелями выдает повышенную мощность, а от нее зависит питание важных приборов, тогда стоит отдать предпочтение МРРТ. Приборы этого типа способны настроить максимально эффективную работу оборудования солнечной электростанции.

Можно ли обойтись без контроллера?

Контроллер заряда солнечной батареи выполняет всего одну, но очень важную функцию – управляет уровнем заряда АКБ. Если его не устанавливать, будет невозможно контролировать процесс заряда-разряда, он будет длиться без остановки, что неизбежно приведет к закипанию электролита и выходу аккумулятора из строя.

Есть вариант, который используют некоторые умельцы, – заменяют контроллер вольтметром. Это не удобно и мало эффективно, поскольку приходится самостоятельно управлять процессом, что не исключает человеческий фактор.

Читайте также:  Сгибание металлопластиковых труб

Компания «ТехноЛайн» предлагает купить солнечный контроллер во Владивостоке – по лучшей цене в регионе, с доставкой и гарантиями безупречной функциональности.

Передовые решения в области автономного и резервного электроснабжения – наша специализация. Покупая у нас, вы не только экономите свой бюджет за счет наших доступных цен, но и получаете консультацию и помощь первоклассных профессионалов с высшим техническим образованием. Ответим на все вопросы, поможем с выбором оптимального по параметрам оборудования.

Источник: e-solarpower.ru

Подбор контроллеров MPPT по параметрам солнечных батарей

По порядку выбора солнечного контроллера MPPT для солнечных батарей есть статья в разделе “Вопросы и ответы” нашего основного сайта. Сначала посмотрите ее.

В этой статье приведены рекомендации инженеров Victron Power по подбору контроллеров MPPT для солнечных батарей.

При подборе солнечных контроллеров с ШИМ все достаточно просто – вы выбираете контроллер с таким же номинальным напряжением, как и солнечная батарея. К сожалению, в большинстве режимов ШИМ контроллер не обеспечивает отбор максимальной мощности от солнечной батарей, что ведет к потерям выработки электроэнергии фотоэлектрическими панелями. На рисунке ниже видно, насколько может снизиться выработка солнечных панелей при работе с ШИМ (PWM) контроллерами (площадь зеленого прямоугольника Vbatt *

Isc) по сравнению с MPPT контроллерами (площадь синего прямоугольника Vmpp * Impp). Разница может доходить до 30%.

Использование MPPT контроллеров существенно увеличивает выработку энергии солнечными батареями.

  • При одинаковой выработке энергии, система с MPPT контроллером может снизить общую стоимость системы электроснабжения, потому что эта энергия может быть выработана меньшим количеством солнечных панелей.
  • При одинаковой мощности солнечных панелей, выработка электроэнергии при использовании MPPT контроллера возрастает.

В обоих случаях выигрывает потребитель!

За счет добавления DC/DC преобразователя в MPPT контроллер система становится более гибкой в работе. MPPT контроллер позволяет работать при различных напряжениях солнечной батарей, без привязки к напряжению аккумуляторной батареи. Поэтому выбирать теперь контроллер для солнечной батареи нужно не так, как ШИМ контроллер заряда. По входному напряжению нужно только, чтобы максимально возможное напряжение от солнечной батареи не превышало максимально допустимое напряжение солнечного контроллера MPPT.

Можно соединять модули как последовательно, так и параллельно. В качественных MPPT контроллерах также есть функция ограничения выходного тока, поэтому можно без опаски подключать к таким контроллерам солнечную батарею заведомо большей мощности, чем мощность MPPT контроллера.

Для тех, кто хочет знать больше технических подробностей:

Превышение допустимого максимального входного напряжения выведет из строя солнечный контроллер.

Конечно, нужно обращать внимание и на минимальное напряжение, начиная с которого MPPT контроллер начнет работать.

If you take a SPM50-12, the Open Circuit Voltage (Voc) is 22.2V and the maximum power voltage (Vmpp) is 18V at Standard Test Conditions (STC) which means 1.000W/m² irradiation, 25°C cell temperature and an Airmass of 1.5. If the cell temperature is higher or less than 25°C, this voltage reduces or increases due to the temperature coefficient, in this case -0.34%/°C (see Blue Solar module datasheet).

So if you take 3 modules SPM50-12 on a Blue Solar MPPT 150/70 in a 48V system on cold days say, -10°C (only looking at the voltage), you can start up charging:

The startup voltage is 48V + 7V (see MPPT 150/70 datasheet) = 55V The modules will produce 3 * ( 22.2V + (-0.34% of 22.2V * -35°C temperature difference)) = 74.5V 74.5V is higher than 55V -> that’s perfect

Also running in the MPP the system would work:

The running voltage is 48V + 2V (see MPPT 150/70 datasheet) = 50V The modules will produce 3 * ( 18V + (-0.34% of 22.2V * -35°C temperature difference)) = 61.9V 61.9V is higher than 50V -> that’s perfect

Doing the same thing, when the modules get warm during the day, in this case 70°C you can see what happens:

The startup voltage is still 48V + 7V (see MPPT 150/70 datasheet) = 55V The modules will produce 3 * ( 22.2V + (-0.34% of 22.2V * 45°C temperature difference)) = 56.4V 56.4V is higher than 55V -> that would work

But now in the MPP the module voltage is lower than the minimum:

The running voltage is 48V + 2V (see MPPT 150/70 datasheet) = 50V The modules will produce 3 * ( 18V + (-0.34% of 22.2V * 45°C temperature difference)) = 43.8V 43.8V is lower than 50V -> this is not enough!

The high DC/DC conversion efficiency (97.5% at 48V) will result in following output maximum charging current (@ -10°C) of 61.9V Vmpp* 2.74A Impp / 48V

Now at high temperatures such as a 70°C cell temperature the system will work just fine! Taking this example in the Spreadsheet you can now increase the number of strings in parallel and you will see, if starting at 11 strings, that the controller will start to reduce power. The big advantage in doing this is that you will now produce the maximum controller output at a lower irradiation. As module prices decrease, this is an effective option.

Please note, that you can use ‘preconfigured’ minimum and maximum temperatures. I’ve also given some installation examples, at the bottom of the spreadsheet, with their anticipated module temperatures for various types of installations.

Источник: shop.solarhome.ru