Реактивное сопротивление или импеданс трансформатора

Реактивное сопротивление или импеданс трансформатора

Все магнитные потоки в трансформаторе не смогут быть связаны с обеими катушками, первичной и вторичной. Небольшая часть потока будет связана с одной из катушек, но не с обеими сразу. Эта часть магнитного потока называется потоком рассеяния. Из-за этого потока рассеяния в трансформаторе возникает реактивное сопротивление рассеяния. Также, связанное с сопротивлением трансформатора, оно является импедансом. Из-за этого импеданса возникают перепады напряжения в обеих обмотках трансформатора, как первичной, так и вторичной.

Сопротивление трансформатора

В целом, как первичные, так и вторичные обмотки электрических силовых трансформаторов выполнены из меди. Медь — это очень хороший проводник электрического тока, но не супер-проводник. Фактически, супер-проводник и супер-проводимость лишь абстрактные понятия, но на практике — это не достижимо. Поэтому обе обмотки будут иметь некоторое сопротивление. Это внутреннее сопротивление, как первичных, так и вторичных обмоток, известно как сопротивление трансформатора.

Импеданс трансформатора

Как было сказано, обе катушки, как первичная, так и вторичная, будут иметь сопротивление и реактивное сопротивление рассеяния. Это сопротивление и сопротивление рассеяния в совокупности есть не что иное, как импеданс трансформатора. Если R1 и R2, и X1 и X2 являются сопротивлением и сопротивлением рассеяния первичной и вторичной обмоток соответственно, тогда Z1 и Z2 – это импеданс первичной и вторичных обмоток, соответственно,

Импеданс трансформатор играет жизненно важную роль во время параллельной работе трансформаторов.

Магнитный поток рассеяния в трансформаторе

В идеальном трансформаторе все магнитные потоки должны быть связаны как с первичной, так и со вторичной обмоткой. Но в действительности — это недостижимо. Хотя максимальный поток будет связан с обеими обмотками через сердечник трансформатора, по-прежнему останется небольшое количество потока, который будет проходить лишь через одну, а не обе обмотки. Этот поток называется потоком рассеяния, и он проходит через часть межобмоточной изоляции и изоляционного масла вместо сердечника. Из-за этого потока рассеяния в трансформаторе обе обмотки, как первичная, так и вторичная, имеют реактивное сопротивление рассеяния. Это сопротивление трансформатора есть не что иное, как реактивное сопротивление рассеяния трансформатора. Это явление в трансформаторе известно как рассеяние магнитного потока.

Перепады напряжения в обмотках происходят из-за импеданса трансформатора. Импеданс — это сочетание сопротивления и реактивного сопротивления рассеяния трансформатора. Если приложить напряжение V1 по всей первичной обмотке трансформатора, возникнет компонент I1X1 как самоиндукция, благодаря реактивному сопротивлению рассеяния. (Здесь, X1 реактивное сопротивление рассеяния). Теперь, если также учитывать падение напряжения из-за сопротивления на первичной обмотке катушки, то уравнение напряжения трансформатора может легко быть написано как,

Аналогично для вторичного реактивного сопротивления рассеяния, уравнение напряжение на вторичной обмотке,

Трансформатор с сердечником и обмотками (катушками)

Здесь, на рисунке выше, первичная и вторичная обмотки (катушки) изображаются как отдельные составляющие и такое расположение может привести в большому потоку рассеяния в трансформаторе, потому что есть доступное пространство для рассеяния. Но расположив вторичную и первичную обмотки концентрически, можно решить эту проблему.

Источник: www.wikitransformer.ru

Что такое реактивное сопротивление трансформатора?

Мы привыкли считать, что все магнитные потоки в трансформаторе пронизывают обе обмотки и магнитопровод. Если бы существовал идеальный трансформатор, то это действительно так бы и происходило. К сожалению, в реальности часть магнитного потока преодолевает изоляционное пространство, выходит за пределы обмоток и замыкается в них (см. рис. 1). В результате возникает реактивное сопротивление трансформатора. Такое явление ещё называют рассеиванием магнитных потоков.

Рис. 1. Схема, иллюстрирующая рассеивание магнитных потоков

В катушках существуют и другие сопротивления, являющиеся причинами потерь мощности. Таковыми являются: внутреннее сопротивление материалов обмоток, и рассеивания, вызванные индуктивными сопротивлениями. Совокупность рассеиваний магнитных потоков называют внутренним сопротивлением или импедансом трансформатора.

Потери реактивных мощностей

Вспомним, как работает идеальный двухобмоточный трансформатор (см. рис. 2). Когда первичная обмотка окажется под переменным напряжением (например, от электрической сети), возникнет магнитный поток, который пронизывает вторичную катушку индуктивности. Под действием магнитных полей происходит возбуждение вторичных обмоток, в витках которых возникает ЭДС. При подключении активной мощности к прибору во вторичной цепи начинает протекать переменный ток с частотой входного тока.

Рис. 2. Устройство трансформатора

В идеальном трансформаторе образуется прямо пропорциональная связь между напряжениями в обмотках. Их соотношение определяется соотношением числа витков каждой из катушек. Если U1 и U2 – напряжения в первой и второй обмотке соответственно, а w1 и w2 – количество витков обмоток, то справедлива формула: U1 / U2 = w1 / w2.

Другими словами: напряжение в рабочей обмотке во столько раз больше (меньше), во сколько раз количество мотков второй катушки увеличено (уменьшено) по отношению к числу витков, образующих первичную обмотку.

Величину w1 / w2 = k принято называть коэффициентом трансформации. Заметим, что формула, приведённая выше, применима также для автотрансформаторов.

В реальном трансформаторе часть энергии теряется из-за рассеяния магнитных потоков (см. рис. 1). Зоны, где происходит концентрация потоков рассеяния обозначены пунктирными линиями. На рисунке видно, что индуктивность рассеяния охватывает магнитопровод и выходит за пределы обмоток.

Наличие реактивных сопротивлений в совокупности с активным сопротивлением обмоток приводят к нагреванию конструкции. То есть, при расчётах КПД необходимо учитывать импеданс трансформатора.

Обозначим активное сопротивление обмоток символами R1 и R2 соответственно, а реактивное – буквами X1 и X2. Тогда импеданс первичной обмотки можно записать в виде: Z1= R1+jX1. Для рабочей катушки соответственно будем иметь: Z2= R2+jX2, где j – коэффициент, зависящий от типа сердечника.

Реактивное сопротивление можно представить в виде разницы индукционного и ёмкостного показателя: X = RL – RC. Учитывая, что RL = ωL, а RC = 1/ωC, где ω – частота тока, получаем формулу для вычисления реактивного сопротивления: X = ωL – 1/ωC.

Не прибегая к цепочке преобразований, приведём готовую формулу для расчёта полного сопротивления, то есть, для определения импеданса трансформатора:

Суммарное сопротивление трансформатора необходимо знать для определения его КПД. Величины потерь в основном зависят от материала обмоток и конструктивных особенностей трансформаторного железа. Вихревые потоки в монолитных стальных сердечниках значительно больше, чем многосекционных конструкциях магнитопроводов. Поэтому на практике сердечники изготавливаются из тонких пластин трансформаторной стали. С целью повышения удельного сопротивления материала, в железо добавляют кремний, а сами пластины покрывают изоляционным лаком.

Читайте также:  Как правильно пользоваться жалюзи

Для определения параметров трансформаторов важно найти активное и реактивное сопротивление, провести расчёты потерь холостого хода. Приведённая выше формула не практична для вычисления импеданса по причине сложности измерений величин индукционного и ёмкостного сопротивлений. Поэтому на практике пользуются другими методами для расчёта, основанными на особенностях режимов работы силовых трансформаторов.

Режимы работы

Двухобмоточный трансформатор способен работать в одном из трёх режимов:

  • вхолостую;
  • в режиме нагрузки;
  • в состоянии короткого замыкания.

Для проведения расчётов режимов электрических цепей проводимости заменяют нагрузкой, величина которой равна потерям при работе в режиме холостого хода. Вычисления параметров схемы замещения проводят опытным путём, переводя трансформатор в один из возможных режимов: холостого хода, либо в состояние короткого замыкания. Таким способом можно определить:

  • уровень потерь активной мощности при работе на холостом ходу;
  • величины потерь активной мощности в короткозамкнутом приборе;
  • напряжение короткого замыкания;
  • силу тока холостого хода;
  • активное и реактивное сопротивление в короткозамкнутом трансформаторе.

Параметры режима холостого хода

Для перехода в работу на холостом ходу необходимо убрать отсутствует нагрузку на вторичной обмотке, то есть – разомкнуть электрическую цепь. В разомкнутой катушке напряжение отсутствует. Главной составляющей тока в первичной цепи является ток, возникающий на реактивных сопротивлениях. С помощью измерительных приборов довольно просто найти основные параметры переменного тока намагничивания, используя которые можно вычислить потери мощности, умножив силу тока на подаваемое напряжение.

Схема измерений на холостом ходу показана на рисунке 3. На схеме показаны точки для подключения измерительных приборов.

Рис. 3. Схема режима холостого хода

Формула, применяемая для расчётов параметров реактивной проводимости, выглядит так: Вт = Iх%*Sном / 100* Uв ном 2 Умножитель 100 в знаменателе применён потому, что величина тока холостого хода Iх обычно выражается в процентах.

Режим короткого замыкания

Для перевода трансформатора на работу в режиме короткого замыкания закорачивают обмотку низшего напряжения. На вторую катушку подают такое напряжение, при котором в каждой обмотке циркулирует номинальный ток. Поскольку подаваемое напряжение существенно ниже номинальных напряжений, то потери активной мощности в проводимости настолько малы, что ими можно пренебречь.

Таким образом, у нас остаются активные мощности в трансформаторе, которые расходуются на нагрев обмоток: ΔPk = 3* I1ном * Rт. Выразив ток I1 ном через напряжение Uка и сопротивление Rт, умножив выражение на 100, получим формулу для вычисления падения напряжения в зонах активного сопротивления (в процентах):

Активное сопротивление двухобмоточного силового трансформатора вычисляем по формуле:

Подставив значение Rт в предыдущую формулу, получим:

Вывод: в короткозамкнутом трансформаторе падение напряжения в зоне активного сопротивления (выраженная в %) прямо пропорционально размеру потерь активной мощности.

Формула для вычисления падения напряжения в зонах реактивных сопротивлений имеет вид:

Величины реактивных сопротивлений в современных трансформаторах гораздо меньше активного. Поэтому можно считать что падение напряжения в зоне реактивного сопротивления Uк рUк, поэтому для практических расчётов можно пользоваться формулой: XT = Uk*Uв ном 2 / 100*Sном

Рассуждения, приведённые выше, справедливы также для многообмоточных, в том числе и для трёхфазных трансформаторов. Однако вычисления проводятся по каждой обмотке в отдельности, а задача сводится к решению систем уравнений.

Знание коэффициентов мощности, сопротивления рассеивания и других параметров магнитных цепей позволяет делать расчёты для определения величин номинальных нагрузок. Это, в свою очередь, обеспечивает работу трансформатора в промежутке номинальных мощностей.

Источник: www.asutpp.ru

Определение импеданса сухого трансформатора – Трансформеры – 2020

Диагностика силового трансформатора (Апрель 2020).

Определение сухого трансформатора Пропорциональное сопротивление (на фото сухого трансформатора фирмы Engineering B & S, Украина)

Введение

Процентное сопротивление представляет собой процентное напряжение, необходимое для циркуляции номинального тока через одну обмотку трансформатора, когда другая обмотка коротко замыкается на номинальном напряжении на номинальной частоте.

% Z относится к мощности короткого замыкания трансформатора во время условий короткого замыкания.

Для двух обмоточного трансформатора с импедансом 5% для намотки высокого напряжения потребуется 5% входного напряжения для наведения 100% номинального тока на вторичную обмотку при коротком замыкании вторичной обмотки.

Если к высоковольтной обмотке применено 100% номинальное напряжение, то во вторичной обмотке будет протекать приблизительно 20- кратный номинальный ток при коротком замыкании вторичной обмотки.

Уровни импеданса

КВА Минимальный импеданс, %
0 – 150 Стандарт производителя
151 – 300 4
301 – 600 5
601 – 2, 500 6
2, 501-5, 000 6, 5
5 001 – 7 500 7, 5
7, 501 – 10, 000 8, 5
Выше 10 000 9, 5

Важные заметки

  1. Сопротивление двухмоторного трансформатора не должно изменяться от гарантированного значения более чем на ± 7, 5%
  2. Сопротивление трансформатора, имеющего три или более обмотки или имеющих зигзагообразные обмотки, не может изменяться от гарантированного значения более чем на ± 10%
  3. Импеданс автотрансформатора не должен изменяться от гарантированного значения более чем на ± 10%
  4. Разность импедансов между трансформаторами той же конструкции не должна превышать 10% от гарантированных значений
  5. Разница импеданса между автоматическими трансформаторами той же конструкции не должна превышать 10% от гарантированных значений

Импеданс против процентного импеданса

Импеданс определяется в стандартном справочнике для инженеров-электриков как « кажущееся сопротивление цепи переменного тока или пути

векторная сумма сопротивления и реактивности пути ». Импеданс может состоять из сопротивления, емкостного реактивного сопротивления и индуктивного сопротивления и выражается в омах.

С точки зрения нагрузки общий входной импеданс может включать в себя сопротивление восходящего генератора, трансформатора, линейного реактора и проводников.

Сопротивление силовой системы полезно для оценки имеющегося тока короткого замыкания.

Примеры расчетов для трехфазного трансформатора мощностью 500 кВА, 4160: 480, 60 Гц, импеданса 6%:
Реактивное сопротивление трансформатора X t = (кВ 2 / МВА) x% Z / 100 = (0, 48 2 / 0, 5) x 0, 06 = 0, 027648 Ом
Приблизительный ток короткого замыкания = 480 / (1.732 x 0.027648) = 10 023, 7 А

Эффективное процентное сопротивление

Эффективный импеданс – это относительный импеданс реактора или трансформатора в реальных условиях эксплуатации. Поскольку нагрузки меньшего (кВА) имеют более высокий импеданс и, следовательно, потребляют меньший ток, чем большие (кВА) нагрузки, внутренние омы реактора или трансформатора представляют меньший процент импеданса нагрузки для небольшой нагрузки (кВА), чем для большой нагрузки.

Читайте также:  Капельное орошение и его устройство

Значение в омах приведет к снижению падения напряжения при протекании менее реактора или тока трансформатора. Если нагрузка составляет только половину номинального тока, то падение напряжения на импедансе будет на одну половину от номинального падения напряжения.

Примеры расчетов для трехфазного трансформатора мощностью 500 кВА, 4160: 480, 60 Гц, импеданса 6%:

Реактивное сопротивление трансформатора X t = (кВ 2 / МВА) x% Z / 100 = (0, 48 2 / 0, 5) x 0, 06 = 0, 027648 Ом
Номинальный вторичный ток = 500 000 / (480 x 1, 732) = 601, 4 А
Фактический ток нагрузки = 300 А
Падение напряжения при фактической нагрузке = 300 x 1.732 x 0.027648 = 14.36 вольт (14.36 / 480 = 0.0299 или 3% от 480 вольт )
Эффективный процентный импеданс = 6% x (300 / 601, 4) = 2, 99%

Сопротивление трансформатора (VIDEO)

Не могу посмотреть это видео? Нажмите здесь, чтобы посмотреть его на Youtube.

Ресурс: Курс ввода подстанции – Трансформатор сухого типа

Источник: ru.electronics-council.com

Реактивное сопротивление или импеданс трансформатора (видео)

Все магнитные потоки в трансформаторе не смогут быть связаны с обеими катушками, первичной и вторичной. Небольшая часть потока будет связана с одной из катушек, но не с обеими сразу. Эта часть магнитного потока называется потоком рассеяния. Из-за этого потока рассеяния в трансформаторе возникает реактивное сопротивление рассеяния. Также, связанное с сопротивлением трансформатора, оно является импедансом. Из-за этого импеданса возникают перепады напряжения в обеих обмотках трансформатора, как первичной, так и вторичной.

Основные различия между активным и реактивным сопротивлением

Когда электрический ток проходит через элементы с активным сопротивлением, происходят необратимые потери выделяемой мощности. Типичным примером служит электрическая плита, где в процессе работы происходят необратимые превращения электричества в тепловую энергию. То же самое происходит с резистором, в котором тепло выделяется, но обратно в электроэнергию не превращается.

Помимо резисторов, свойствами активного сопротивления обладают приборы освещения, электродвигатели, трансформаторные обмотки, провода и кабели и т.д.

Характерной особенностью элементов с активным сопротивлением являются напряжение и ток, совпадающие по фазе. Рассчитать этот параметр можно по формуле: r = U/I. На показатели активного сопротивления оказывают влияние физические свойства проводника – сечение, длина, материал, температура. Эти качества позволяют различать реактивное и активное сопротивление и применять их на практике.

Реактивное сопротивление возникает в тех случаях, когда переменный ток проходит через так называемые реактивные элементы, обладающие индуктивностью и емкостью. Первое свойство характерно для катушки индуктивности без учета активного сопротивления ее обмотки. В данном случае причиной появления реактивного сопротивления считается ЭДС самоиндукции. В зависимости от частоты тока, при ее возрастании, наблюдается и одновременный рост сопротивления, что отражается в формуле xl = wL.

Реактивное сопротивление конденсатора зависит от емкости. Оно будет уменьшаться при увеличении частоты тока, поэтому данное свойство широко используется в электронике для выполнения регулировочных функций. В этом случае для расчетов используется формула xc = 1/wC.

В электронике существует не только активное и реактивное, но и полное сопротивление цепи, представляющее собой сумму квадратов обоих сопротивлений. Этот параметр обозначается символом Z и отображается в виде формулы:

В графике это выражение выглядит в виде треугольника сопротивлений, где реактивное и активное сопротивление соответствуют катетам, а полное сопротивление или импеданс – гипотенузе.

Импеданс трансформатора

Обе катушки, которые располагаются в трансформаторе называются реактивным сопротивлением рассеивания. Это сопротивление в совокупности можно назвать, как импеданс трансформатора. Теперь если R1 и R2, и X1 и X2 будут являться сопротивлением рассеяния в первичной и вторичной обмотке, тогда Z1 и Z2 можно считать импедансом трансформатора.

Импеданс трансформатор будет играть жизненно важную роль во время параллельной работы. При необходимости вы можете прочесть про сухие трансформаторы.

Индуктивное сопротивление

Реактивное сопротивление подразделяется на два основных вида – индуктивное и емкостное.

При рассмотрении первого варианта следует отметить возникновение в индуктивной обмотке магнитного поля под действием переменного тока. В результате, в ней образуется ЭДС самоиндукции, направленной против движения тока при его росте, и по ходу движения при его уменьшении. Таким образом, при всех изменениях тока и наличии взаимосвязей, ЭДС оказывает на него противоположное действие и приводит к созданию индуктивного сопротивления катушки.

Под влиянием ЭДС самоиндукции энергия магнитного поля обмотки возвращается в электрическую цепь. То есть, между источником питания и обмоткой происходит своеобразный обмен энергией. Это дает основание полагать, что катушка индуктивности обладает реактивным сопротивлением.

В качестве типичного примера можно рассмотреть действие реактивного сопротивления в трансформаторе. Данное устройство имеет общий магнитопровод, с расположенными на нем двумя обмотками или более, имеющими общую зависимость. На одну из них поступает электроэнергия из внешнего источника, а из другой выходит уже трансформированный ток.

Под действием первичного тока, проходящего по катушке, в магнитопроводе и вокруг него происходит наведение магнитного потока. В результате пересечения витков вторичной обмотки, в ней формируется вторичный ток. При невозможности создания идеальной конструкции трансформатора, магнитный поток будет частично уходить в окружающую среду, что приведет к возникновению потерь. От них зависит величина реактивного сопротивления рассеяния, которая совместно с активной составляющей образуют комплексное сопротивление, называемое электрическим импедансом трансформатора.

Магнитный поток рассеяния в трансформаторе

В идеальном трансформаторе все магнитные потоки должны быть связаны как с первичной, так и со вторичной обмоткой. Но в действительности – это недостижимо. Хотя максимальный поток будет связан с обеими обмотками через сердечник трансформатора, по-прежнему останется небольшое количество потока, который будет проходить лишь через одну, а не обе обмотки. Этот поток называется потоком рассеяния, и он проходит через часть межобмоточной изоляции и изоляционного масла вместо сердечника. Из-за этого потока рассеяния в трансформаторе обе обмотки, как первичная, так и вторичная, имеют реактивное сопротивление рассеяния. Это сопротивление трансформатора есть не что иное, как реактивное сопротивление рассеяния трансформатора. Это явление в трансформаторе известно как рассеяние магнитного потока.

Перепады напряжения в обмотках происходят из-за импеданса трансформатора. Импеданс – это сочетание сопротивления и реактивного сопротивления рассеяния трансформатора. Если приложить напряжение V1 по всей первичной обмотке трансформатора, возникнет компонент I1X1 как самоиндукция, благодаря реактивному сопротивлению рассеяния. (Здесь, X1 реактивное сопротивление рассеяния). Теперь, если также учитывать падение напряжения из-за сопротивления на первичной обмотке катушки, то уравнение напряжения трансформатора может легко быть написано как,

Читайте также:  Как правильно сделать компостную кучу на участке?

V1 = E1 + I1(R1 + jX1) ⇒ V1 = E1 + I1R1 + jI1X1

Аналогично для вторичного реактивного сопротивления рассеяния, уравнение напряжение на вторичной обмотке,

V2 = E2 – I2(R2 + jX2) ⇒ V2 = E2 – I2R2 − jI2X2

Трансформатор с сердечником и обмотками (катушками)

Здесь, на рисунке выше, первичная и вторичная обмотки (катушки) изображаются как отдельные составляющие и такое расположение может привести в большому потоку рассеяния в трансформаторе, потому что есть доступное пространство для рассеяния. Но расположив вторичную и первичную обмотки концентрически, можно решить эту проблему.

Емкостное сопротивление

В цепи, содержащей емкость и источник переменного тока происходят изменения заряда. Такой емкостью обладают конденсаторы, обладающие максимальной энергией при полном заряде. Напряжение емкости создает сопротивление, противодействующее течению переменного тока, которое считается реактивным. В результате взаимодействия, конденсатор и источник тока постоянно обмениваются энергией.

В конструкцию конденсатора входят токопроводящие пластины в количестве двух и более штук, разделенных слоями диэлектрика. Такое разделение не позволяет постоянному току проходить через конденсатор. Переменный ток может проходить через емкостное устройство, отклоняясь при этом от своей первоначальной величины.

Изменения переменного тока происходят под влиянием емкостного сопротивления. Чтобы лучше понять схему работы, найдем и рассмотрим принцип действия данного явления. Переменное напряжение, приложенное к конденсатору, изменяется в форме синусоиды. Под его воздействием на обкладках наблюдается всплеск, одновременно здесь накапливаются заряды электроэнергии с противоположными знаками. Их общее количество ограничено емкостью устройства и его габаритами. Чем выше емкость устройства, тем больше времени требуется на зарядку.

В момент изменения полупериода колебания, напряжение на обкладках конденсатора меняет свою полярность на противоположное значение, потенциалы также изменяются, а заряды пластин перезаряжаются. За счет этого удается создать течение первичного тока и находить способ противодействовать его прохождению, при уменьшении величины и сдвиге угла. Зарядка обкладок позволяет току, проходящему через конденсатор, опережать напряжение на 900.

Компенсация реактивной мощности

С помощью электрических сетей осуществляется передача электроэнергии на значительные расстояния. В большинстве случаев она используется для питания электродвигателей, имеющих высокое индуктивное сопротивление и большое количество резистивных элементов. К потребителям поступает полная мощность, которая делится на активную и реактивную. В первом случае с помощью активной мощности совершается полезная работа, а во втором – происходит нагрев трансформаторных обмоток и электродвигателей.

Под действием реактивной составляющей, возникающей на индуктивных сопротивлениях, существенно понижается качество электроэнергии. Противостоять ее вредному воздействию помогает комплекс мероприятий по компенсации с использованием конденсаторных батарей. За счет емкостного сопротивления удается понизить косинус угла φ.

Компенсирующие устройства применяются на подстанциях, от которых электричество поступает к проблемным потребителям. Этот способ дает положительные результаты не только в промышленности, но и на бытовых объектах, снижая нагрузку на оборудование.


Источник: lightika.com

Реактивное сопротивление или импеданс трансформатора

Практически в каждом трансформаторе есть разнообразные магнитные потоки. Они не могут быть связанны с двумя катушками. Небольшая часть потока может быть связанна только с одной катушкой, но никак не с двумя. Эта часть магнитного потока называется потоком рассеивания. Именно из-за этого потока в трансформаторе может возникнуть реактивное сопротивление рассеяния.

Если рассеяние будет связанно с сопротивлением, тогда его можно будет назвать импедансом. Из-за него могут возникать определенные перепады, которые возникнут на обеих обмотках трансформатора. Если вам будет интересно, тогда вы можете прочесть про резервную релейную защиту.

Реактивное сопротивление трансформатора

На сегодняшний день первичная и вторичная обмотка трансформатора выполняются из меди. Медь считается достаточно хорошим проводником электрического тока. На практике практически нереально найти супер-проводник. Именно поэтому обмотки могут иметь определенное сопротивление. Это внутреннее сопротивление, которое будет возникать в первичной и вторичной обмотке можно называть сопротивлением трансформатора.

Импеданс трансформатора

Обе катушки, которые располагаются в трансформаторе называются реактивным сопротивлением рассеивания. Это сопротивление в совокупности можно назвать, как импеданс трансформатора. Теперь если R1 и R2, и X1 и X2 будут являться сопротивлением рассеяния в первичной и вторичной обмотке, тогда Z1 и Z2 можно считать импедансом трансформатора.

Импеданс трансформатор будет играть жизненно важную роль во время параллельной работы. При необходимости вы можете прочесть про сухие трансформаторы.

Магнитный поток рассеяния

В идеальном трансформаторе практически все магнитные потоки должны будут быть связанны не только с первичной, но и вторичной обмоткой. В действительности добиться этого результата будет просто нереально. Если максимальный поток будет связан с обеими обмотками, тогда вы все равно сможете встретить небольшое количество потока, который будет проходить не через одну, а через две обмотки.

Именно этот поток можно назвать потоком рассеяния, который будет проходить через часть межобмоточной изоляции. Перепады напряжения в обмотках можно считать импедансом трансформатора. Импеданс – это специальное сочетание сопротивления и реактивного сопротивления рассеяния трансформатора. Если вы желаете приложить напряжение в первичной обмотке, тогда может возникнуть компонент I1X1. Это будет происходить из-за сопротивления рассеяния. Если учесть падение напряжения, которое возникает из на падения напряжения в катушке, тогда уравнение напряжения будет выглядеть следующим образом:

V1 = E1 + I1(R1 + jX1) ⇒ V1 = E1 + I1R1 + jI1X1

Для вторичного реактивного сопротивления рассеяния можно использовать второе уравнение:

V2 = E2 – I2(R2 + jX2) ⇒ V2 = E2 – I2R2 − jI2X2

На рисунке выше вы сможете увидеть первичную и вторичную обмотку. Как видите, они не соприкасаются между собой. Такое расположение может привести к большому потоку рассеивания. Этот процесс может возникнуть из-за того, что между обмотками присутствует пространство. Если вы расположите первичную и вторичную обмотку концентрически, тогда эту проблему можно легко решить.

Если вы решите посмотреть видео, тогда вы сможете увидеть, что у трансформатора могут возникать определенные потери мощности. Надеемся, что эта статья помогла разобраться вам с реактивным сопротивлением трансформатора.

Источник: dekormyhome.ru